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In a quantum nanometric lateral quantum dot �QD� with a � geometry the spin properties of a single
electron injected in the Coulomb blockade regime are modified by the spin-orbit interaction, resulting in a
transformation of the qubit state carried by the spin. The �-shaped QD acts as a one-qubit spintronic quantum
gate whose properties can be varied by tuning the Rashba parameter of the spin-orbit interaction, by changing
the relative position of the junctions, as well as by modifying the length of the transverse legs. We discuss how
a large class of transformations can be attained with already one � nanojunction or a few � nanojunctions in
series.
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I. INTRODUCTION

Because the spin degree of freedom promises many appli-
cations in electronics,1,2 recently, increasing attention, from
both experimental and theoretical physics communities, has
been devoted toward the interplay of spin-orbit interaction
�SOI� and quantum interference effects in confined semicon-
ductor heterostructures. Such interplay can be exploited as a
means to control and manipulate the spin degree of freedom
at a mesoscopic scale useful for phase-coherent spintronic
applications.1

In general, the SOI can be described by the Hamiltonian3

ĤSO = −
�0

2

�
m0eE�r� · ��̂ � p̂� . �1�

Here E�r� is the electric field, �̂ are the Pauli matrices, p̂ is
the canonical momentum operator, r is a three-dimensional
�3D� position vector, �0

2=�2 / �2m0c�2, and m0 is the electron
mass in vacuum, while in materials m0 and �0 are substituted
by their effective values m� and �. The SO term can be seen
as the interaction of the electron spin with the magnetic field
Beff appearing in the rest frame of the electron.

In this paper we focus on a low-dimensional nanostruc-
ture patterned in a two-dimensional electron gas �2DEG�, a
gas of electrons free to move in two dimensions, but tightly
confined in the third. This tight confinement leads to quan-
tized energy levels for motion in that direction, which can
then be ignored for most problems. In order to engineer a
2DEG, it is usual to utilize the heterojunction between two
semiconducting materials which confines electrons into a tri-
angular quantum well. Thus, due to the band offsets at the
interface of two different materials, electrons are confined by
forming a 2DEG �in the xy plane�, while because of the
asymmetry in the quantum well potential that confines the
2DEG,4 the electrons are moving in an effective electric field
Ez along ẑ. The Rashba SOI �Ref. 5� stems from the dis-
cussed structure inversion asymmetry of the heterostructure
quantum well. However, in 2DEGs, there are also different
types of SOI: the Dresselhaus term which originates from the
inversion asymmetry of the zinc-blende structure and the
confining �-coupling term arising from the in-plane electric
potential that is applied to squeeze the 2DEG into a defined

nanostructure.6 Since the original proposal of the spin field-
effect transistor by Datta and Das,7 many proposals appeared
based on intrinsic spin-splitting properties of semiconductors
associated with the Rashba SOI. This is a dominant mecha-
nism that has been proven to be a convenient means for
achieving an all-electrical control of the spin-polarized cur-
rent through additional gate voltages. Recent measurements
based on the spin-galvanic effect provided the magnitude of
the ratio of Rashba and Dresselhaus8 terms. This ratio can
reach values as large as 2.14�0.25 in InAs quantum wells.9

The Rashba term is in general dominant but the Dresselhaus
interaction can yield observable effects.

The Rashba Hamiltonian obtained from Eq. �1� takes the
form6

ĤSO
	 =

	

�
��xpy − �ypx� =

�kR

m�
��xpy − �ypx� , �2�

where 	, which in vacuum is given by �0
2Eze, in semicon-

ductor heterostructures takes values typically10–12 within the
range of �10−11–10−12 eV m, while its highest value is
close to 10−10 eV m as reported in Refs. 13 and 14. Here
kR� m�	

�2 = 

Lso

, which has a natural value6,15 kR

�10−5–10−2 nm−1 for 	�10−12–10−10 eV m. The spin-
precession length7 Lso measures the strength of Rashba spin
splitting5 in terms of a length scale.

Even though the Rashba spin splitting is expected to be
very small, nonetheless this perturbation can give rise to a
sizeable modification of a semiconductor band structure.16,17

Moreover, for applications it is essential that the strength of
the Rashba effect, and thus the spin splitting, can be con-
trolled by means of a gate electrode.

The Dresselhaus Hamiltonian takes the form18

ĤSO
	D =

	D

�
��xpx − �ypy� =

�kD

m�
��xpx − �ypy� , �3�

where 	D�	R /2.
Prominent experiments have shown injection of spin-

polarized currents into semiconductor material,19 long
spin dephasing times in semiconductors �approaching
microseconds�,20 ultrafast coherent spin manipulation,21 as
well as phase-coherent spin transport over distances of up to
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100 �m.20 Irrespective of spin, the charge of the electrons
can be used to control single electrons by confining them in
quantum dot �QD� structures, leading to striking effects in
the Coulomb blockade �CB� regime.22

In addition, suitable means for controlling spin at mesos-
copic scales are provided by quantum interference effects.
The effects of spin interference caused by Rashba SOI were
largely studied in the last years, and more recently they were
measured experimentally. In Ref. 23 the authors studied
Aharonov-Bohm-type conductance oscillations in ring struc-
tures as a function of the Rashba-SOI strength and associated
these observations with the Aharonov-Casher �AC� effect.

In a recent paper24 the spin rotation due to the Rashba SOI
induced by the spin interference in a ballistic quasi-one-
dimensional �Q1D� � nanojunction, a crossing junction in-
volving three Q1D wires �Fig. 1� with two leads was ana-
lyzed. This device, such as the quantum ring in Ref. 25, acts
as a one-qubit spintronic quantum gate whose properties can
be varied by tuning the Rashba parameter of the SOI. How-
ever, in the discussed structures, it is very difficult to handle
a single electron, while one has to handle a single electron
for quantum information processing because information is
carried by the spin of a single electron. It follows that the
customary continuous transport experiment cannot be uti-
lized as quantum information processing. Thus, here, our aim
is to find a device which works in a different regime rather
than in the ballistic one, where a single electron spin can be
handled by obtaining the same kind of spin rotation.

Thus in this paper we focus on the single electron trans-
port in the � nanojunction subject to Rashba SOI and show
that this device made of a semiconductor structure such as
InGaAs, in which Rashba-type SOI is the dominant spin-
flipping mechanism, can render a one-qubit spintronic quan-
tum gate. In this case we assume that the device works in the
Coulomb blockade regime and can be assumed as an empty
lateral QD. We show that also in this regime, where the
quantized energy levels of the isolated � junction are in-
volved, the system acts as a spin rotator and operates as a
spintronic quantum gate acting on a single electron. Thus we
assume that two tunnel barriers, as shown in Fig. 1 �left�, are
now introduced between the external leads �source and drain�
and the � nanojunction. These potential barriers introduced

in the model could be due to the presence of two quantum
point contacts by introducing a weak coupling between the
external leads and the device �see, e.g., Ref. 26�. Obviously
the approach used in the ballistic regime has to be modified
and replaced by a suitable formalism in order to describe the
single electron tunneling.

In this paper we first analyze the model which describes
the suggested device by calculating the relevant parameters
in the physics of Q1D ballistic devices. Next we calculate the
single-particle energy levels obtained applying the quantum
waveguide approach and discuss the spin polarization of the
corresponding eigenstates. Starting from the knowledge of
the electron bound states we will be able to study the behav-
ior of a single electron injected in the � QD, and we will
analyze that from a spintronics point of view.

II. SOI IN Q1D SYSTEMS AND WAVE FUNCTIONS

The quasi-one-dimensional ballistic quantum wire �QW�,
a nanometric solid-state device, is the basic building block of
the considered nanojunction. In the QW the transverse mo-
tion is quantized into discrete modes, and the longitudinal
motion is free. In this case, electrons propagate freely down
a clean narrow pipe, and electronic transport with no scatter-
ing can occur.

If we assume that the QW is oriented along the y axis, as
in Fig. 1 �right�, and the lateral confining potential Vc�x� is
approximated by a parabola27 �where � is related to the ef-
fective width W of the QW according to the formula 2W2

=� / �m����, thus the Hamiltonian without the SOI reads

Ĥ0 =
p2

2m�
+ Vc�r� =

p2

2m�
+

m�

2
�2x2. �4�

As we know from Refs. 28 and 29, the QW Hamiltonian in
the presence of Rashba SOI cannot be exactly diagonalized.
Thus Hamiltonian �3� can be separated in a commuting part

��Ĥc , Ĥ0�=0�

Ĥc =
1

�
�	�̂x + 	D�̂y�py =

�k̃Rpy

m�
�̂̃x, �5�

and a nondiagonal part.28,29

FIG. 1. �Color online� �Left� The � junctions ��� can be assumed as crossing junctions involving three Q1D wires of width W ranging
between �25 and 100 nm. Arms 1 and 4 are connected to the contact lead �source �S� and drain �D�� that we suppose to be also
ferromagnetic. The current flows through a tunnel junction �S-�-D� giving a series of events in which exactly one electron passes �tunnels�
through the tunnel barriers �single electron tunneling�. The two potential barriers at y=−b and x= �d can be produced, e.g., by the presence
of two quantum point contacts which make the conducting channel narrower, or they could be due to the subband mismatch between the
junction and the external leads. �Right� Schematic of a quantum wire patterned in a 2DEG obtained at the interface of a semiconductor
heterostructure. In these devices we can consider that the degree of freedom corresponding to z is quantum mechanically frozen out.
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In the presence of a significant Dresselhaus SOI we rede-
fine the quantization axis for the spin by introducing

�̂̃x =
	�̂x + 	D�̂y

�	2 + 	D
2

and k̃R=�	2+	D
2 /	.

It follows that the Rashba subbands splitting in the ener-
gies, in the first-order approximation, read

n,k,sx
= ���n +

1

2
	 +

�2

2m�
��k � kR�2 − kR

2� . �6�

The � sign corresponds to the spin polarization along the x
axis, i.e., to the spin eigenstate �sx

, while the confining en-
ergy �� can be also read as the intersubband gap.

If we also include in the calculation the Dresselhaus term

we have to replace in Eq. �6� kR with k̃R while the spin is
now polarized with respect to a new axis x̃ forming an angle

�̃ with the x direction, where tan��̃�=
	D

	 .
The noncommuting term can be neglected in the first-

order approximation and becomes relevant just near the
crossing points k= �kc= �m�

�kR
, as was discussed in Refs. 28

and 29 and bibliographies therein. Thus, as we easily obtain
from Eq. �6�, the approximation is largely justified for values
of the energies below

c = ���1 +
LSO

2

4W2	 .

Hence we can conclude that four-split channels are present
for a fixed Fermi energy F, corresponding to �py and sx
= �1 �or s̃x= �1 if we also include 	D� with eigenfunctions

fF,n,sx
= un�x�eikn

s �F�y�sx
,

where un�x� are harmonic-oscillator eigenfunctions. Here

kn
s�F� = skR � �kR

2 + kn
2 � skR � qn,

where kn
2= 2m�

� �F−��
2n+1

2 � and qn=�kR
2 +kn

2.
The QW Hamiltonian in general has eigenfunctions be-

longing to the one-dimensional �1D� subbands �n=0,1 , . . .�;
however in the Q1D limit we can assume n=0 and neglect
the transverse part of the wave function un�x�. The latter
approximation can be justified by assuming the energy of the
lowest levels in the QD, or more in general the Fermi energy
in the leads, to be less than 3�� /2 corresponding to the
bottom of the n=1 subband. In the following we will refer to
a QW with an effective width of W�20 nm where ��
�50 meV, while the lowest energy levels are below 60
meV.

III. � JUNCTION

In order to obtain the single-particle spectrum of the �
QD we use the one-dimensional quantum waveguide
theory.30 This approximation is justified if we assume �i� the
effective width, W, to be smaller than the other length pa-
rameters �b ,d� and �ii� the energy of the lowest energy levels

 to be smaller than 3�� /2. The latter condition, discussed
above, can be replaced when we define the rescaled energy
̃=−�� /2 that has to be smaller than the intersubband gap,
��, i.e., the energy gap between the bottom of two nearest
subbands.

If these conditions are fulfilled, the transverse dimension
is negligible and we can treat the junction as a strictly one-
dimensional device and neglect the contribution of un�x�.
Thus, in each of the four QWs, the Hamiltonian H0+Hc

	 has
eigenfunctions belonging to the lowest 1D subband n=0
given by

fq,→

 = eiqyeikRy�→

x , fq,←

 = eiqye−ikRy�←

x ,

fq,↑
= = eiqxeikRx�↑

y, fq,↓
= = eiqxe−ikRx�↓

y ,

where 
 stands for probes 2, 5, or 3 and = for sectors 1 and 4.

IV. ENERGY LEVELS

First of all, we introduce the wave functions, �p, in each
of the five different regions: the bottom arms 1 and 4, the
interferometric region �−d�x�d�, and the two side arms 2
and 3. Notice that the arms are closed, i.e., �2�−�d+b� ,0�
=0 and �3�d+b ,0�=0, while �1�−d ,−b�=0 and �4�d ,−b�
=0 �the latter condition corresponds to assume an infinite
potential barrier at y=−b, i.e., to consider the limit of weak
coupling between the external leads and the device�. Thus we
use the Griffith31 boundary condition, which states that the
wave function is continuous in �−d ,0� and �d ,0�, and that
the current density is conserved at each intersection. The
resulting set of linear equations leads to a relation between
the expansion coefficients Aq

� in the different domains and
also yields the allowed energies for the quantum system.

The values of qn corresponding to the allowed energy
levels are obtained by the solution of

cot�qnd� =
1

2
tan�qnb�, symmetric �S� , �7�

tan�qnd� = −
1

2
tan�qnb�, antisymmetric �A� , �8�

sin�qnb� = 0 �GS� . �9�

Notice that the energy levels do not depend on the strength
of SOI and are fixed just by the size of the � junction as
shown in Fig. 2.

Now we want to discuss the energy levels for three dif-
ferent geometries of the � dot. Here we suppose ��

�50 meV corresponding to W�20 nm and �2
2

2m�b2

�20 meV, corresponding to b=100 nm.
If we assume b=d�100 nm �A junction in Fig. 2� we

obtain the energy levels for qm��0.3+ m
2 � 


b �S�, for qm

�� m+1
2 � 


b �A�, and for qm��m+1� 

b according to Eqs.

�7�–�9�. Thus the ground state �GS� �S� corresponds to ̃q
�1 and 8 meV while the first excited state �A� corresponds
to ̃q�5 meV.

If we assume d=2b�200 nm �B junction in Fig. 2� we
obtain the energy levels for qm��0.2+ m

2 � 

b �S�, for qm
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��0.37+ m
2 � 


b �A�, and for qm��m+1� 

b . Thus the GS �S�

corresponds to q�0 and 8 meV, while the first excited state
�A� corresponds to ̃q�2 and 7 meV.

If we assume d=3b�300 nm �C junction in Fig. 2� we
obtain the energy levels for qm��0.14+ m

2 � 

b �S�, for qm

��0.28+ m
2 � 


b �A�, and for qm��m+1� 

b . Thus the GS �S�

corresponds to q�0 and 4 meV, while the first excited state
�A� corresponds to ̃q�1 and 5 meV.

With the aim of engineering a device operating in the
Coulomb blockade regime, we have to take into account also
the electron-electron repulsion and the thermal effects. The
Coulomb repulsion, Uc, that has to be taken into account
when a second electron is injected in the dot is Uc
�1 meV �of the same order as the energy gap � between
the GS and the first excited level�. Moreover the thermal
energy can be evaluated as kB=8.6�10−2 meV K−1; hence
the gap of 1 meV is observable up to a temperature about 10
K. Thus, in the following we suppose that the QD is empty
and neglect the effect of a second electron injected.

V. SPIN-POLARIZED INJECTION IN THE � QD

Next we suppose that the QD is empty. Obviously the
discussion can be extended to a many-electron dot by includ-
ing the effect of the spin-dependent electron-electron
interaction.32 Thus we can limit ourselves to the ground state
of the QD.

Nevertheless the spin degeneration of the eigenstates re-
quires the knowledge of the spin polarization in one of the

arms. If we suppose that the injected electron comes from a
ferromagnetic source �i.e., spin polarized� contact, we can
also fix the spin polarization in arm 1 �see Fig. 3, top� near
the tunnel barrier at the lead-dot junction. In fact, in the
language of the single-particle picture each level of the QD,
m, will have a coupling �m

S ��m
D� due to the different overlap

of its wave function with source �drain� contact. Thus we can
assume as a boundary condition that the electron in arm 1
and at y=−d is polarized exactly as in the ferromagnetic
source �see Fig. 3, top�. Starting from this ansatz the spin
polarization is univocally defined in all the other regions of
the QD.

VI. QUBIT OPERATIONS

The 
 nanojunction proposed here allows for a significant
class of spin transformations to be described now in the fixed
Sx basis, which is more suitable to discuss the qubit opera-
tions in this case. We focus here on the transmission proper-
ties of the � QD when in probe 1 an electron with a generic
spin polarization at y=−b is injected,

�0 = f→�→ + f←�← = cos��

2
	e−i�/2�→ + sin��

2
	ei�/2�←.

Here � and � are the spherical coordinates which we need in
order to describe the spin orientation in the 3D space. �0
corresponds to a wave function in arm 1,

�1�y� = f→eikR�y+b� sin�q�y + b���→

+ f←e−ikR�y+b� sin�q�y + b���←,

which gives

�Sx� = cos��� ,

�Sy� = sin���cos�� − 2kR�y + b�� ,

FIG. 2. �Color online� The energy spectra for different geom-
etries �i.e., as a function of the constructive parameters d and b�.
The lowest energy levels as a function of the interferometric dis-
tance, d, for a fixed length of the arms �b=100 nm�. We report the
rescaled energy ̃ in meV.

FIG. 3. �Color online� �Top� Spin polarization near the lead-dot
junction. �Bottom� Spin rotation around the y axis induced by the
combined effect of interference and SOI.
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�Sz� = sin���sin�� − 2kR�y + b�� ,

with the special case of the spin-polarized electrons along the
x direction �f→=0 or f←=0� where the spin polarization is
uniform along all the arms.

The wave function in arm 4 can be written as

�4�y� = t→eikR�y+b� sin�q�y + b���→

+ t←e−ikR�y+b� sin�q�y + b���←,

where

�t→

t←
	 = �U14

→→ U14
→←

U14
→→ U14

→→ 	� f→

f← 	 = U · f , �10�

where U is a unitary, unimodular matrix which performs a
nontrivial spin transformation in the qubit space,

U = � cos�2kRd� i sin�2kRd�
i sin�2kRd� cos�2kRd�

	 . �11�

Notice that the transformation given by Eq. �11� is indepen-
dent of the wave vector q, and it rotates the spin. In fact, the
U matrix acts on �0 ��1� by giving in lead 4

�Sx� = cos���cos��� − sin���sin���sin�� − 2kR�y + b�� ,

�Sy� = sin���cos�� − 2kR�y + b�� ,

�Sz� = sin���cos��� + cos���sin���sin�� − 2kR�y + b�� .

Thus, assuming the injected spin in y=−b, with a spin polar-

ization �S�0�, the � QD rotates the spin along the x and z axes
around the y axis �see Fig. 3� by an angle

� � 2kRd . �12�

As was shown in Fig. 2 of Ref. 24, by changing the strength
of the SOI �kR� or the distance 2d between the junctions,
according to the equation above, the value of � can be var-
ied.

Notice that the rotation reported in Eq. �11� is independent
of the kinetic energy ̃k, and it rotates the spin around the y
axis by an angle �, also independent of q. By changing the
strength of the SOI or the distance between the junctions,
according to Eq. �12�, the values of � can be varied from 0
up to 2
. Once we fix the rotation angle � �e.g., �=
 /2 as in
Fig. 3, bottom�, we can design the gate by fixing d �if we
assume a InGaAs device with the SOI strength near the natu-
ral value we obtain d�Lso /4�100 nm�.

In the language of quantum informatics,33 the transforma-
tion discussed above represents a rather general single-qubit
gate. A transformation of the form U with �=
 /2 is essen-
tially a so-called quantum NOT gate, which plays a distin-
guished role in quantum algorithms. Moreover we note that
in principle a number of other gates can be constructed by
coupling several of those � junctions.

If we take into account the presence of a Dresselhaus term
of SOI, the unitary matrix reported in Eq. �11� has to be
replaced by a more general matrix—once again unitary.
The matrix elements of U are u11=−u�22=cos���
+ i cos���sin��� and u21=u12= i sin���sin��� with �= 


2 −2�̄.

However, the important fact is that U is a unitary matrix and
thus is able to perform a nontrivial spin transformation in the
qubit space.

VII. DISCUSSION

In this paper we discussed some realistic or theoretical
devices capable of acting as spintronic gates based on the
Rashba SOI. We analyzed an idealized model system in
which transport is in the CB regime, characterized by the fact
that just one single electron tunnels at the time through the
QD, and the system was treated as being one dimensional,
i.e., the finite width, W, of the wire was not included in the
calculation. This corresponds to assuming 1 degree of free-
dom to be frozen because the energy ��= h2

2m�W2 is larger than
both the energy � and the thermal energy kBT. The results
we have shown were obtained using values of the well width
within those given by presently available 2DEGs and nano-
lithography techniques; in fact, the lithographical width of a
wire defined in a 2DEG can be as small as 20 nm �Ref. 34�
����50 meV�. Larger values of the QW’s width yield a
reduction in the intersubband gap so that for W=50 nm one
has ���8 meV. In this case the excitation gap � �i.e., the
difference between the ground state and the first excited
level� becomes comparable with the intersubband gap; hence
the Q1D approximation can fail.

Here we proposed conductors smaller than the dephasing
length for low temperatures. In fact, phase coherence and
spin coherence lengths35 have been found to have values up
to 100 mm, while recently it was found that the finite width
of the wires has a small effect on the loss of coherence of the
spin state.

The SOI strengths, which were shortly discussed above,
have been theoretically evaluated for some semiconductor
compounds.36 In a QW patterned in InGaAs/InP
heterostructures,6,15 the natural values read 	�10−10 eV m
while for GaAs-AsGaAl interfaces, one typically observes16

values of 	�10−11 eV m, whereas for HgTe-based hetero-
structures 	 can be more than three times larger.37 Thus,
values of kR up to �10−2 nm−1 can be assumed due to the
natural SOI, i.e., to the structure inversion asymmetry of the
heterostructure quantum well. On the contrary, larger values
have to be obtained by controlling the transverse electric
field, e.g., by tuning the voltage on the gate electrode. We
also want to point out that the excitation gap � is much
larger than the thermal energy provided that T�10 K.

In conclusion, we have shown that a quantum � nano-
junction with Rashba-type SOI can serve as a one-qubit
quantum gate for electron spins. The spin transformation
properties of the gates can be extended by coupling such
nanojunctions in series. Different types of gates can be real-
ized by tuning the electric-field strength and changing the
geometric position of the two cross junctions. The consid-
ered parameters are within the experimentally feasible range.

We acknowledge the support of the grant 2006 PRIN
“Sistemi Quantistici Macroscopici-Aspetti Fondamentali ed
Applicazioni di strutture Josephson Non Convenzionali.”
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